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NONLINEAR TIDAL FLOWS IN SHORT-PERIOD PLANETS

A.J. Barker1,2

Abstract. I discuss two related nonlinear mechanisms of tidal dissi-
pation that require finite tidal deformations for their operation: the
elliptical instability and the precessional instability. Both are likely to
be important for the tidal evolution of short-period extrasolar planets.
The elliptical instability is a fluid instability of elliptical streamlines,
such as in tidally deformed non-synchronously rotating or non-circularly
orbiting planets. I summarise the results of local and global simu-
lations that indicate this mechanism to be important for tidal spin
synchronisation, planetary spin-orbit alignment and orbital circulari-
sation for the shortest period hot Jupiters. The precessional instability
is a fluid instability that occurs in planets undergoing axial precession,
such as those with spin-orbit misalignments (non-zero obliquities). I
summarise the outcome of local MHD simulations designed to study
the turbulent damping of axial precession, which suggest this mecha-
nism to be important in driving tidal evolution of the spin-orbit angle
for hot Jupiters. Avenues for future work are also discussed.

1 Introduction

Tidal interactions between short-period planets and their host stars are thought
to play an important role in the evolution of the planetary orbit as well as the
stellar and planetary spins (e.g. Zahn 2013; Mathis et al. 2013; Ogilvie 2014).
The clearest evidence of tidal evolution in extrasolar planetary systems is the
eccentricity distribution of the approximately Jupiter-mass planets (here taken to
mean masses M ≥ 0.3MJ ), which is shown in Figure 1. Planets with P > 10 d
have a wide range of eccentricities, whereas the population with P < 10 d has
much lower eccentricities and displays a strong preference for circular orbits. Tidal
dissipation inside the planet (and perhaps partly also the star) is thought to be
responsible for this dichotomy, since it tends to damp the orbital eccentricities of
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Fig. 1. Eccentricity distribution of Jupiter-mass extrasolar planets (with M ≥ 0.3MJ
and P < 100 d). Planets with P > 10 d have a wide range of eccentricities, whereas the

population with P < 10 d has much lower eccentricities and displays a strong preference

for circular orbits. This provides strong evidence of the important role of tidal dissipation

in shaping planetary orbits.

the shortest-period planets (it may also have played a role in their formation if
they underwent a period of “high eccentricity migration” to attain such periods
e.g. Wu & Lithwick 2011; Naoz et al. 2011; Anderson et al. 2016). The timescale
for this evolution depends on the mechanisms of tidal dissipation, which are only
partly understood theoretically. Here, I will focus on nonlinear tidal mechanisms
that require finite amplitude tidal deformations. This is partly because nonlinear
effects are the least well understood, but more importantly it is because their
consideration is likely to be essential for understanding the tidal evolution of short-
period planets.
The (dimensionless) tidal deformations of short-period planets can be

estimated by (the height of the tide is approximately εTRp)

εT =
m�

mp

(
Rp

a

)3
≈ 0.01

(
P

1 d

)−2
, (1.1)

where m� and mp are the stellar and planetary masses, Rp is the planetary radius,
a is the orbital semi-major axis, and P is the orbital period (taking mp=MJ ,
m�=M� and Rp=RJ on the right hand side). The most extreme current example
is WASP-19 b (Hebb et al. 2010), with its 0.78 d orbital period, giving εT ∼ 0.05.
This is no longer a small parameter, indicating that nonlinear effects could be
important even for large-scale tidal flows in such a body. This can be compared
with the tides in Jupiter and Saturn due to their most massive satellites (εT ∼
10−7), where nonlinear effects may be much less important for the largest-scale
tidal flows (though they could still be important in damping tidally-excited short-
wavelength waves).
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Fig. 2. Left: Illustration of global elliptical flow inside the planet viewed from above

(the rotation axis Ω is pointing towards us), also indicating the local model considered

by Barker & Lithwick (2013, 2014). Right: Results of local Cartesian (MHD) and global

ellipsoidal (hydrodynamic) simulations of the elliptical instability, showing that the tur-

bulent (volume and time-averaged) dissipation is consistent with a simple cubic scaling

with εT γ.

In this paper, I will discuss two related nonlinear tidal mechanisms: the elli-
ptical instability and the precessional instability. The former occurs in fluids
with elliptical streamlines (see also the related paper by Favier 2017), such as in
tidally deformed planets, and the latter occurs in fluid bodies that undergo axial
precession, such as planets with misaligned spins and orbits (nonzero obliquities).
Both are parametric instabilities driven by the periodic time-dependence of fluid
properties around a streamline, leading to the excitation of inertial waves (restored
by the Coriolis force) in the planetary interior. And both mechanisms are likely
to be important for tidal evolution of short-period planets.

2 Elliptical instability

The elliptical instability is a fluid instability of elliptical streamlines, such as the
large-scale non-wave-like tidal flow in a planet that is non-synchronously rotating
or has an eccentric orbit (see the left panel of Fig. 2 for illustration). The simplest
case for illustration is a planet on a circular orbit but that is non-synchronously
rotating (with an aligned or anti-aligned spin axis). In the frame rotating at the
rate Ω about the spin axis, the elliptical deformation has frequency 2γ, where
γ = n − Ω. Inertial waves exist with frequencies |ω| < 2|Ω|. If a pair of these
waves (with subscripts 1 & 2) has frequencies such that |ω1 ± ω2| ≈ 2|γ|, then
the superposition of one of these waves with the deformation can excite the other
wave, and vice versa, leading to instability. Consideration of the spatial structure
of the waves leads to the additional requirement that the azimuthal wavenumbers
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and harmonic degrees satisfy |m1±m2| = 2 (since the deformation hasm = 2) and
�1 = �2. The maximum growth rate (which typically occurs when |ω1| ≈ |ω2| ≈ γ)
is (e.g. Kerswell 2002)

σ ∼ εT γf(n, γ), (2.1)

where f(n, γ) is a dimensionless function of n and γ. In the limit εT � 1, insta-
bility occurs if −1 ≤ n

Ω ≤ 3, but is also possible outside of this range (particularly
for anti-aligned spins with n

Ω � −1, if εT is sufficiently large, due to the finite
resonant widths e.g. Barker et al. 2016).
The instability leads to turbulence in the planetary interior that produces

enhanced tidal dissipation. In hydrodynamical simulations (Barker 2016a), the
instability generates differential rotation in the planetary interior in the form of
zonal flows (or columnar vortices in a local Cartesian model, at least if εT � 0.15;
Barker & Lithwick 2013), which control the saturation of the instability, leading
to cyclic, predator-prey-like dynamics (where zonal flows act as the predator and
waves the prey) with intermittent dissipation. Zonal flows have also been observed
in experiments of the elliptical instability (e.g. Le Bars et al. 2015; Favier et al.
2015). In the presence of weak magnetic fields (Barker & Lithwick 2014), or an
alternative frictional mechanism that damps zonal flows (e.g. Le Reun et al. 2017),
the instability leads to sustained turbulence with significantly enhanced dissipa-
tion over that of the laminar tidal flow.
The (volume and time-averaged) turbulent dissipation rate D resulting from

sustained instability can be simply estimated. Nonlinearities saturate growth of
the unstable waves if uλ−1 ∼ σ, where u is a typical velocity and λ is the wave-
length of the dominant waves. Kinetic energy is dissipated at the rateD∼σu2mp∼
ε3T γ

3λ2mp, where we have neglected taken f(n, γ) = 1 for simplicity. For numer-
ically accessible εT ∼ 0.01 − 0.3 (including the relevant regime for the
shortest-period planets such as WASP-19 b), both local and global simulations
are consistent with this simple argument, as we show in Figure 2, with D ≈
χEε

3
T γ
3R2pmp, where χE ≈ 0.1 provides an approximate upper bound on D

(though χE does vary to some extent with n, as does σ). It remains to be seen
whether this scaling would persist for much smaller εT , when the instability is
more likely to excite very short-wavelength waves (λ � Rp). Also, these argu-
ments neglect the inhibiting effects of zonal flows that lead to intermittent rather
than sustained turbulence. Hence, this scaling is best thought of as an approximate
upper bound on the dissipation (due to bulk turbulence) if we want to extrapolate
to smaller εT .
In the frequency range where the instability operates, the resulting turbulent

dissipation would drive tidal synchronisation (and evolution of the planetary spin-
orbit angle ψ) on a timescale

τΩ ≈ τψ ≈ 1Gyr
(
0.1

χE

)(
P

14.7 d

)6(
Prot

1 d

)
, (2.2)

where Prot is the planetary rotation period, and circularisation on a timescale

τe ≈ 1Gyr
(
0.1

χE

)(
P

2.8 d

) 25
3

, (2.3)
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where we have taken the planet to have Jupiter’s mass and radius (and radius of
gyration) and the star to be Sun-like for both estimates1 (Barker 2016a). Hence,
this instability could be important for tidal evolution of the shortest-period hot
Jupiters, and we would predict orbital circularisation for P � 3 d, and spin syn-
chronisation and alignment for P � 15 d, due to this mechanism acting in iso-
lation. However, additional mechanisms appear to be required to explain tidal
circularisation for 3 d � P � 10 d (Fig. 1), such as tidal dissipation of linearly-
excited inertial waves (and their linear or nonlinear damping) in planets with a core
(e.g. Ogilvie & Lin 2004), or dissipation in the solid core itself (Remus et al. 2012;
Storch & Lai 2014).

3 Precessional instability

The spin axis of a rotationally deformed planet is forced to precess about its
orbital angular momentum vector, due to the tidal gravity of its host star, if these
directions are misaligned (if the spin-orbit angle ψ �= 0, 90◦, 180◦). A typical period
of axial precession is

Pp =
2π

Ωp
≈ 1.3 yr

(
P

10 d

)2(
Prot

10 hr

)
, (3.1)

where Ωp≡ εpΩ ∝ εTΩ is the precession rate (εp is a dimensionless version), for
a Jupiter-mass and radius planet orbiting a Sun-like star. This precession is po-
tentially observable for some transiting planets through transit depth variations
(e.g. Carter & Winn 2010), which would provide important constraints on the
oblateness and interior structure of the planet. However, axial precession would
only occur in single planet systems (and be potentially observable) if ψ can remain
significantly misaligned. Tidal evolution is expected to ultimately lead to align-
ment (ψ → 0◦). One mechanism that could play a role in driving this tidal
evolution is the precessional instability, which will now be introduced.
Axial precession induces internal flows inside the planet that are time-periodic,

with frequency |Ω| in the frame rotating with the planet. Pairs of inertial waves
can be driven unstable if |ω1 ± ω2| ∼ |Ω|, and the fastest growing modes typically
have |ω1| ∼ |ω2| ∼ |Ω|/2, with a maximum growth rate (Kerswell 1993)

σ ∼ Ωp. (3.2)

The nonlinear evolution of this instability in a local Cartesian model behaves
just like the elliptical instability (Barker & Lithwick 2013; Barker 2016b). For
small εp, the purely hydrodynamical instability generates columnar vortices which
inhibit sustained instability and lead to cyclic, predator-prey-like dynamics, with
intermittent turbulent dissipation. The addition of a weak magnetic field elim-
inates these vortices and leads to sustained turbulence. Global simulations are

1 Note that these are much more strongly period dependent than a linear tidal mechanism or
by a naive constant Q (or constant lag-time) model.
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Fig. 3. Turbulent (volume and time-averaged) dissipation from local Cartesian hydro-

dynamic (left), and MHD (right) simulations with an initially weak magnetic field as a

function of the dimensionless precession rate εp. There is a regime transition in the hydro-

dynamic simulations, where columnar vortices inhibit sustained instability for εp � 0.1.
The MHD simulations are consistent with a simple cubic scaling with the precession rate

over the simulated range, and appear to be approximately independent of the diffusivities.

currently in progress, where we expect the instability to generate zonal flows, and
for these to subsequently control the dissipation (this was demonstrated already
in the specific case of an initially anti-aligned spin, once it had evolved away
from pure anti-alignment, in Barker 2016a, where the elliptical instability was also
present).

The turbulent dissipation resulting from this instability can be estimated in
the same way as for the elliptical instability outlined above. The local MHD (and
also, approximately, the “bursty” hydrodynamic) simulations are consistent with
D ≈ χpΩ

3
pR
2
pmp (with turbulent velocities u ∼ ΩpRp), with χp ≈ 0.01, over the

range εp ∼ 0.01–0.5, as we show in Figure 3. This range is somewhat larger than
the realistic values of εp, requiring us to extrapolate the scaling to probe the as-
trophysical regime. It remains to be seen whether this scaling would persist for
much smaller εp, so it is best thought of as an approximate upper bound on the
bulk turbulent dissipation when εp � 1.
The consequences of this turbulent dissipation are tidal evolution of the spin-

orbit angle ψ for short-period planets, which evolves due to this mechanism acting
in isolation according to (Lai 2012; Ogilvie 2014)

dψ

dt
= − sinψ cos

2 ψ

τψ
(cosψ + α) , (3.3)

where α is the ratio of planetary spin to orbital angular momentum and

τψ ≈ 1Gyr
(
0.01

χp

)(
P

18 d

)6(
Prot

10 hr

)
(3.4)
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is the timescale for ψ to evolve towards alignment (ψ=0◦) if |ψ| is small (Barker
2016b), for a Jupiter-mass and radius planet around the current Sun. This is also
the timescale for ψ to evolve towards anti-alignment (ψ=180◦), if |ψ − 180◦| is
small. The corresponding timescale if ψ ∼ 90◦ is larger by a factor α−1 � 103,
indicating that most planets with nearly perpendicular spins will not undergo
appreciable evolution by this mechanism acting in isolation. However, other tidal
mechanisms will also contribute, and in general we expect the ultimate tidal evo-
lution to be towards alignment. Nevertheless, this crude estimate suggests that
the precessional instability could be important for tidal evolution of the spin-orbit
angle for the shortest-period hot (and warm) Jupiters with P � 18 d.

4 Discussion

I have discussed two related nonlinear mechanisms of tidal dissipation that require
finite-amplitude tidal deformations for their operation, that could both be impor-
tant for the spin-orbit evolution of short-period extrasolar planets.
The elliptical instability occurs in tidally deformed fluid bodies. Local and

global simulations suggest that it could drive tidal spin synchronisation (and spin-
orbit alignment) for hot (and warm) Jupiters with2 P � 10–15 d, and tidal circu-
larisation for P � 2–3 d. Other mechanisms are probably required to explain the
small eccentricities of planets with 3 d � P � 10 d, shown in Figure 1.
The precessional instability occurs in axially precessing fluid bodies, such as in

rotating planets with spin-orbit misalignments. Simulations using a local model
suggest that it can drive tidal evolution of the spin-orbit angle (towards alignment
or anti-alignment, depending on the initial value) for planets with P � 10–18 d
(Barker 2016b). Global simulations of this instability are currently in progress.
The models that have been adopted so far to study these instabilities are

extremely idealised, mainly restricted to homogeneous fluid bodies. Real planets
and stars are certainly not homogeneous, but exploring such models constituted
a necessary first step. Future work is required to simulate the instability in more
realistic planetary models (i.e. with a realistic density and entropy stratification),
including the presence of an inner core (e.g. by extending Favier et al. 2014 to
adopt more realistic boundary conditions and consider larger tidal amplitudes),
as well as the influence of magnetic fields in global models. The effect of zonal
flows on the saturation of these instabilities in the astrophysically relevant regime
of small deformations (or precession rates), as well as vanishingly small viscosi-
ties should be considered, as should the coexistence of both types of instability,
and these instabilities with turbulent convection. Clearly, much further work is
required to understand tidal dissipation in planets and stars, and for us to be able
to explain the astrophysical observations.

2 The lower limit to these ranges is based on a modified scaling of D with εT that takes into
account that λ� Rp when εT � 1 (Barker 2016a), which is also consistent with simulations for
accessible values of εT � 0.01.
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